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A NOTE ON A HYPERGEOMETRIC SERIES BASED

SOLUTION TO THE BASEL PROBLEM

Arjun Kumar Rathie and Dongkyu Lim*

Abstract. In a very recent paper, Campbell [A Wilf-Zeilbeger
based solution to the Basel problem with applications, Discrete
Math. Lett. 10 (2022), 21-27], after re-writing the Basel series
into a 3F2(1) hypergeometric series, pointed out that “it is not
obvious as to have classically known hypergeometric identities for

3F2(1)-series with free parameters such as those of Dixon’s summa-
tion identity, Whipple’s summation identity or Watson’s summation
identity could be used to determine a full proof for the closed form

3F2(1)-Basel series”. Thus the aim of this note is to provide the
solution of the 3F2(1)-Basel series via the above-mentioned three
summation identities.

1. Introduction

It is well-known that the problem of determining a closed form eval-
uation for the series
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22
+
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32
+ · · · ,

which is known in the literature as the Basel problem, is one of the
most famous problems in the history of mathematics. This problem was
solved for the first time in 1735 by mathematician Euler and in terms of

the Riemann zeta function, the famous formula ζ(2) = π2

6 is also due to
Euler. Since then, from time to time, many elegant proofs of this famous
formula have been discovered by mathematicians and researchers. For
this, we refer [2, 4–41, 43, 44, 46, 47] and the references therein.
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On the other hand, the generalization of the well-known and useful
Gauss’s hypergeometric function pFq is defined as [1, 3, 42, 45]

(1.1) pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
=

∞∑
n=0

(a1)n (a2)n · · · (ap)n zn

(b1)n (b2)n · · · (bq)n n!
,

where aj(j = 1, 2, · · · , p) and bj(j = 1, 2, · · · , q) may be real or complex
numbers with an exception that bj(j = 1, 2, · · · , q) should not be zero or
a negative integer, z being the variable of the series, and (a)n denotes the
Pochhammer’s symbol (or the shifted factorial, since (1)n = n!) defined
for any complex number a(̸= 0) by

(1.2) (a)n =

{
a(a+ 1) . . . (a+ n− 1), n ∈ N,
1, n = 0.

Further, in terms of the well-known Gamma function, the Pochhammer’s
symbol (a)n is represented as

(1.3) (a)n =
Γ(a+ n)

Γ(a)
.

The series (1.1) is convergent for all values of z for |z| < ∞ if p ≤ q and
for all values of z for |z| < 1 if p = q+1. Also, when |z| = 1 with p = q+1,

the series (1.1) is convergent absolutely if ℜ
(∑q

j=1 bj −
∑p

j=1 aj

)
> 0.

For more details about this function, we refer standard texts of Rainville
[42], Slater [45], Bailey [3] and Andrews [1].

It is interesting to mention that whenever a hypergeometric func-
tion 2F1 or the generalized hypergeometric function pFq reduces to the
gamma function, the result is very useful from the point of view of
applications. In literature, there exists a large number of summation
theorems. However, in our present investigations, we shall mention the
following three classical summation theorems.

Dixon summation theorem [45]
(1.4)

3F2

[
a, b, c

1 + a− b, 1 + a− c
; 1

]
=

Γ
(
1 + 1

2a
)
Γ(1 + a− b)Γ(1 + a− c)Γ

(
1 + 1

2a− b− c
)

Γ(1 + a)Γ
(
1 + 1

2a− b
)
Γ
(
1 + 1

2a− c
)
Γ(1 + a− b− c)

,

provided ℜ(a− 2b− 2c) > −2 .
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Whipple’s summation theorem [45]
(1.5)

3F2

[
a, b, c
e, f

; 1

]
=

21−2cπΓ(e)Γ(f)

Γ
(
1
2a+ 1

2e
)
Γ
(
1
2a+ 1

2f
)
Γ
(
1
2b+

1
2e
)
Γ
(
1
2b+

1
2f

) ,
provided a+ b = 1, e+ f = 1 + 2c, and ℜ(c) > 0.

Watson summation theorem [45]

(1.6)

3F2

[
a, b, c

1
2(a+ b+ 1), 2c

; 1

]
=

Γ
(
1
2

)
Γ
(
c+ 1

2

)
Γ
(
1
2a+ 1

2b+
1
2

)
Γ
(
c− 1

2a− 1
2b+

1
2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+
1
2

) ,
provided ℜ(2c− a− b) > −1.

In addition to this, we shall also use the following transformation
formula for the series 3F2(1) due to Thomas [3]:
(1.7)

3F2

[
α1, α2, α3

β1, β2
; 1

]
=

Γ (β2) Γ (β1 + β2 − α1 − α2 − α3)

Γ (β2 − α3) Γ (β1 + β2 − α1 − α2)
3F2

[
β1 − α1, β1 − α2, α3

β1, β1 + β2 − α1 − α2
; 1

]
,

provided ℜ(β2 − α3) > 0 and ℜ(β2 + β1 − α1 − α2 − α3) > 0.

In a very recent paper, Campbell [7], after re-writing the Basel series

(1.8)
1

12
+

1

22
+

1

32
+ · · · = π2

6

into a 3F2(1) hypergeometric series in the form

(1.9) 3F2

[
1, 1, 1
2, 2

; 1

]
=

π2

6

pointed out that “it is not obvious as to have classically known hyperge-
ometric summation theorems for the series 3F2(1) with free parameters
such as those of Dixon’s summation identity (1.4), Whipple’s summa-
tion identity (1.5) or Watson’s summation identity (1.6) could be used
to determine a full proof for the closed-form 3F2(1)-Basel series (1.9)”.
Thus our aim of this note is to provide the solution of the 3F2(1)-Basel
series by employing the summation identities (1.4) to (1.6).
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2. Derivation of Basel series

2.1. Via Dixon and Whipple identites

Denoting the left-hand side of (1.9) by S, we have

S = 3F2

[
1, 1, 1
2, 2

; 1

]
=

∞∑
n=1

1

n2

=
∞∑
n=0

1

(n+ 1)2

=

∞∑
n=0

1

(2n+ 1)2
+

∞∑
n=0

1

(2n+ 2)2

=
∞∑
n=0

1

(2n+ 1)2
+

1

4

∞∑
n=0

1

(n+ 1)2
.

Therefore,

S =
∞∑
n=0

1

(2n+ 1)2
+

1

4
S

⇒ 3

4
S =

∞∑
n=0

1

(2n+ 1)2

⇒ S =
1

3

∞∑
n=0

1(
n+ 1

2

)2
=

1

3

∞∑
n=0

Γ2
(
n+ 1

2

)
Γ2

(
n+ 3

2

)
converting into Pochhammer symbols, we have

S =
4

3

∞∑
n=0

(
1
2

)
n

(
1
2

)
n
(1)n(

3
2

)
n

(
3
2

)
n
n!

(since (1)n = n!).

Finally, using (1.1), we have

(2.1) S =
4

3
3F2

[
1
2 ,

1
2 , 1

3
2 ,

3
2

; 1

]
.

We now observe that the 3F2 appearing on the right-hand side of
(2.1) can be evaluated with the help of the Dixon’s identity (1.4) by
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letting a = 1, b = c = 1
2 and after little simplification, we easily arrive

at the right-hand side of (1.9).
We also observe that the function 3F2 appearing on the right-hand

side of (2.1) can also be evaluated with the help of the Whipple’s identity
(1.5) by letting a = b = 1

2 , c = 1 and e = f = 3
2 and, after some calcu-

lation, we easily arrive at the right-hand side of (1.9). This completes
the proof of the Basel series via Dixon and Whipple identities.

2.2. Via Watson identity

In the result (2.1), if we apply the Thomas transformation (1.7) by
taking α1 = α2 = 1

2 , α3=1 and β1 = β2 = 3
2 , then after little simplifica-

tion, we have

S =
2

3
3F2

[
1, 1, 1
3
2 , 2

; 1

]
.

We now observe that the function 3F2 can be evaluated with the help
of Watson’s identity by taking a = b = c = 1 and after little algebra, we
easily arrive at the right-hand side of (1.9). This completes the proof of
the Basel series via Watson identity.

Concluding remark :
In this note, we have provided the solution of the 3F2(1)-Basel series via
Dixon, Whipple, and Watson summation identities.
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